Seismic Attributes from Ultra-Thin Layered Reservoir

Seismic Attributes from Ultra-Thin Layered Reservoir

This page is a publication and represents journal papers, conference papers and proceedings etc.

0
No votes yet

users have rated this content. We would love to have your vote as well. Log in and rate!



We propose the method of computation seismic AVO attributes (intercept and gradient) from ultra-thin geological model based on the SBED modelling software. The SBED software is based on manipulating sine-functions, creating surfaces representing incremental sedimentation. Displacement of the surfaces creates a three dimensional image mimicking bedform migration, and depositional environments as diverse as tidal channels and mass flows can be accurately recreated. The resulting modelled deposit volume may be populated with petrophysical information, creating intrinsic properties such as porosity and permeability (both vertical and horizontal). The Backus averaging technique is used for up-scaling within the centimetre scale (the intrinsic net-to-gross value controls the acoustic properties of the ultra-thin layers). It results in pseudo-log data including the intrinsic anisotropy parameters. The synthetic seismic modelling is given by the matrix propagator method allows us to take into account all pure mode multiples, and resulting AVO attributes become frequency dependent. Within this ultra-thin model we can test different fluid saturation scenarios and quantify the likelihood of possible composite analogues.
Content

We propose the method of computation seismic AVO attributes (intercept and gradient) from ultra-thin geological model based on the SBED modelling software. The SBED software is based on manipulating sine-functions, creating surfaces representing incremental sedimentation. Displacement of the surfaces creates a three dimensional image mimicking bedform migration, and depositional environments as diverse as tidal channels and mass flows can be accurately recreated. The resulting modelled deposit volume may be populated with petrophysical information, creating intrinsic properties such as porosity and permeability (both vertical and horizontal). The Backus averaging technique is used for up-scaling within the centimetre scale (the intrinsic net-to-gross value controls the acoustic properties of the ultra-thin layers). It results in pseudo-log data including the intrinsic anisotropy parameters. The synthetic seismic modelling is given by the matrix propagator method allows us to take into account all pure mode multiples, and resulting AVO attributes become frequency dependent. Within this ultra-thin model we can test different fluid saturation scenarios and quantify the likelihood of possible composite analogues. This modelling can also be used for inversion of real seismic data into net-to-gross and fluid saturation for ultra-thin reservoirs.

Other key information

206 results
Below, you will find related content (content tagged with same topic(s) as this publication)
Content type: Ongoing activity

A benchmark for integration of reservoir engineering and geophysics

This activity facilitates the collaboration between reservoir engineers and geophysicists

0
Content type: Publication

A Derivative-Free Approach for the Estimation of Porosity and Permeability Using Time-Lapse Seismic and Production Data

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Lagrangian-Barrier Function for Adjoint State Constraints Optimization of Oil Reservoirs Water Flooding

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Robust Scheme for Spatio-Temporal Inverse Modeling of Oil Reservoirs

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Sparse Basis POD for Model Reduction of Multiphase Compressible Flow

This is a scientific publication written in collaboration with the IO Center

0
Content type: Publication

A structured approach to improved condition monitoring

A paper describing a systematic approach to select and implement appropriate condition monitoring for systems, structures and components.

0
Content type: Presentation

Acceptance criteria for dynamic risk analysis

Presentations at IO Center Work Shop Sept 2013

0
Content type: Presentation

Activities on Dynamic Optimization

TC Meeting - September 2013

0
Content type: Publication

Adaptive Multiscale–Streamline Simulation and Inversion for High-Resolution Geomodels

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Presentation

Addressing Dynamic Risk in the Petroleum Industry by Means of Innovative Analysis Solutions

Presentation given at the CISAP-6 conference in Bologna (13-16 April 2014)

0

Pages