Oil production optimization—A piecewise linear model, solved with two decomposition strategies

Oil production optimization—A piecewise linear model, solved with two decomposition strategies

This page is a publication and represents journal papers, conference papers and proceedings etc.

5
Average: 5 (1 vote)

1 users have rated this content. We would love to have your vote as well. Log in and rate!



Abstract

This paper presents a new method for real-time optimization of process systems with a decentralized structure where the idea is to improve computational efficiency and transparency of a solution. The contribution lies in the application and assessment of the Lagrange relaxation and the Dantzig–Wolfe methods, which allows us to efficiently decompose a real-time optimization problem. Furthermore, all nonlinearities are modeled by piecewise linear models, resulting in a mixed integer linear program, with the added benefit that error bounds on the solution can be computed. The merits of the method are studied by applying it to a semi-realistic model of the Troll west oil rim, a petroleum asset with severe production optimization challenges due to rate dependent gas-coning wells. This study indicates that both the Lagrange relaxation and in particular the Dantzig–Wolfe approach offers an interesting option for complex production systems. Moreover, the method compares favorably with the non-decomposed method.
Content

This paper presents a new method for real-time optimization of process systems with a decentralized structure where the idea is to improve computational efficiency and transparency of a solution. The contribution lies in the application and assessment of the Lagrange relaxation and the Dantzig–Wolfe methods, which allows us to efficiently decompose a real-time optimization problem. Furthermore, all nonlinearities are modeled by piecewise linear models, resulting in a mixed integer linear program, with the added benefit that error bounds on the solution can be computed.

The merits of the method are studied by applying it to a semi-realistic model of the Troll west oil rim, a petroleum asset with severe production optimization challenges due to rate dependent gas-coning wells. This study indicates that both the Lagrange relaxation and in particular the Dantzig–Wolfe approach offers an interesting option for complex production systems. Moreover, the method compares favorably with the non-decomposed method.

Other key information

207 results
Below, you will find related content (content tagged with same topic(s) as this business case)
Content type: Publication

Fast Reservoir Characterization and Development of a Field Case Study with Real Production and 4D Seismic Data

This is a PhD thesis written at the Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology.

0
Content type: Publication

Fast Reservoir Parameter Estimation by Using Effect of Principal Components Sensitivities and Discrete Cosine Transform

This is a scientific publication written in collaboration with the IO Center

0
Content type: Publication

Feedback Control of Two-Phase Flow in (Secondary) Enhanced Oil Recovery

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Business case

Field Development Optimization at Martin Linge Oil Reservoir

Application of Decision Support Framework for Well Location

5
Content type: Publication

Flow control of fluids through porous media

This is a scientific publication written in collaboration with the IO Center

0
Content type: Presentation

Flow diagnostics and Voador case using MRST - Status and results

Presentation given at TC-meeting September 2013

0
Content type: Publication

Flow Diagnostics for use in Reservoir Management

Fast computational tools for optimization and interactive visulaization.

0
Content type: Publication

Generalization of the Vertically Heterogeneous Velocity Models

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

Generalized Reduction Constraints for the Global Optimization of Dynamic Process Networks using Topological Invariants

This is a scientific publication written in collaboration with the IO Center.

0

Pages