Applying Time-Lapse Seismic Inversion In Reservoir Management

Applying Time-Lapse Seismic Inversion In Reservoir Management

This page is a publication and represents journal papers, conference papers and proceedings etc.

0
No votes yet

users have rated this content. We would love to have your vote as well. Log in and rate!



Time-lapse seismic inversion approach to reservoir management has proven to be a vital tool in the industry today because of its effectiveness in tracking the movement of fluid front within the reservoir as well as identifying isolated bypassed accumulations.
Content

A base (2001) and three monitor (2003, 2004 and 2006) seismic surveys from the Norne field were inverted during this research. Water and gas have been injected into the reservoir to maintain the initial pressure within the field. These seismic surveys were analyzed for time-lapse impedance changes due to the differences in the produced hydrocarbons and the injected fluids. Check-shot corrected well data as well as interpreted horizons were integrated in the inversion process. Two independent wavelets were extracted from base and monitor surveys and combined to form an all-encompassing frequency and amplitude wavelet. The base and monitors were jointly inverted. This is because of the reduction in inconsistencies that are associated with independent inversions of surveys and the production related changes expected in time-lapse inverted seismic data.

The results of the inversion show the impedance difference across the field for the various monitor surveys. Areas surrounding producer wells show slight changes in impedance while great impedance difference are observed around injector wells. A statistical analysis of the inversion results also shows steady increase in impedance across the field for the subsequent monitors. Structural and stratigraphic interpretation of the time-lapse inverted data also confirmed the sealing properties of some formations. This sealing property supported the impedance changes within the field. Fault interpretations as well as its sealing and non-sealing properties were inferred from the impedance differences across various discontinuities.

Time-lapse acoustic impedance inversion of the Norne post-stack seismic data has revealed the impacts of production, dynamic fluid changes across main identified geologic structures, fluid front migration, fluid communication across structures and segments and other identified stratigraphic elements.

Other key information

202 results
Below, you will find related content (content tagged with same topic(s) as this publication)
Content type: Publication

Generalized Reduction Constraints for the Global Optimization of Dynamic Process Networks using Topological Invariants

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

Generalized Travel-Time Inversion on Unstructured Grids

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

Global Stabilization of The Generalized Burgers-Korteweg-de Vries Equation by Boundary Control

This is a scientific publication written in collaboration with the IO Center

0
Content type: Publication

Gradient-based Methods for Production Optimization of Oil Reservoirs

This is a PhD thesis written at the Department of Engineering Cybernetics, Norwegian University of Science and Technology.

0
Content type: Tools and methods

Implementation of pressure prediction and problem detection in drilling

Matlab implementations with the ability to connect to SiteCom servers

0
Content type: Publication

Improved Geometrical Spreading Approximation in Layered Transversely Isotropic Media

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Topic page

Integrated downhole seismics

Phase one of the IO center ran a successful study on downhole seismics and full waveform inversion. We here give an account of the results.

0
Content type: Publication

Integrated Field Modeling and Optimization

This is a PhD thesis written at the Department of Engineering Cybernetics, Norwegian University of Science and Technology.

0
Content type: Ongoing activity

Integrated modeling and optimization

This work shows how its is possible to integrate models along the value chain till facilities.

0

Pages