Parallel Dantzig–Wolfe decomposition for real-time optimization—Applied to a complex oil field

Parallel Dantzig–Wolfe decomposition for real-time optimization—Applied to a complex oil field

This page is a publication and represents journal papers, conference papers and proceedings etc.

5
Average: 5 (1 vote)

1 users have rated this content. We would love to have your vote as well. Log in and rate!



Abstract

This paper studies Dantzig–Wolfe decomposition for real-time optimization of process systems with a decentralized structure. The idea is to improve computational efficiency and transparency of a solution. The contribution lies in the application of the Dantzig–Wolfe method which allows us to efficiently decompose an optimization problem into parts. Moreover, we show how the algorithm can be parallelized for even higher efficiency. The nonlinear system is modeled by piecewise linear models with the added benefit that error bounds can be computed. In this context alternative parameterizations are discussed. The properties of the method are studied by applying it to a model of a complex petroleum field with severe production optimization challenges due to rate dependent gas-coning wells. The model resembles the Troll west oil rim, a huge gas and oil field on the Norwegian Continental shelf. Finally, the paper discusses workflows in production optimization as a means to explain how the proposed methodology can be applied in practice.
Content

This paper studies Dantzig–Wolfe decomposition for real-time optimization of process systems with a decentralized structure. The idea is to improve computational efficiency and transparency of a solution. The contribution lies in the application of the Dantzig–Wolfe method which allows us to efficiently decompose an optimization problem into parts. Moreover, we show how the algorithm can be parallelized for even higher efficiency. The nonlinear system is modeled by piecewise linear models with the added benefit that error bounds can be computed. In this context alternative parameterizations are discussed.

 The properties of the method are studied by applying it to a model of a complex petroleum field with severe production optimization challenges due to rate dependent gas-coning wells. The model resembles the Troll west oil rim, a huge gas and oil field on the Norwegian Continental shelf.

 Finally, the paper discusses workflows in production optimization as a means to explain how the proposed methodology can be applied in practice.

Other key information

207 results
Below, you will find related content (content tagged with same topic(s) as this publication)
Content type: Publication

Adjoint Multiscale Mixed Finite Elements

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

Adjoint Multiscale Mixed Finite Elements (conf)

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

Advanced History Matching Techniques Reviewed

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Report

Anomaly detection and sensemaking in time series interpretation

Interim report on the development of anomaly detection methods in conjunction with risk indicators and decision support

0
Content type: Publication

Applying Chemical EOR on the Norne Field C-Segment

Finding an optimum chemical flooding strategy for the Norne C-Segment to maximise the profit from volume of incremental oil produced

0
Content type: Publication
Content type: Report
Content type: Publication

Attenuation versus scattering in a periodically layered medium

This is a scientific publication written in collaboration with the IO Center.

0

Pages