Distributed Optimization and Control of Offshore Oil Production: The Intelligent Platform

Distributed Optimization and Control of Offshore Oil Production: The Intelligent Platform

This page is a publication and represents journal papers, conference papers and proceedings etc.

0
No votes yet

users have rated this content. We would love to have your vote as well. Log in and rate!



Abstract

We describe a novel approach to distributed optimization and control of offshore oil production systems. The model incorporates a complex pipeline network. Oil and gas production systems are represented as a network of connected hierarchical structures of sub sea wells, manifolds and clusters. We consider multiphase flow of water, gas, and oil in the pipelines, and account for discrete switching and typical inflow characteristics of the sub sea wells. Network methods based on variational calculus provide a modeling framework for decentralized optimization and control. Conservation laws and the second law of thermodynamics combined with the passivity theory of nonlinear control lead to conditions for stability and optimality. We describe interconnections in networks through matrix representations that capture a network's topology. Control strategies are derived from the model, and stability and convergence to the optimal solution follows from the passivity conditions. The proposed distributed controller network can be seen as a special case of a Multi Agent System (MAS).
Content

We describe a novel approach to distributed optimization and control of offshore oil production systems. The model incorporates a complex pipeline network. Oil and gas production systems are represented as a network of connected hierarchical structures of sub sea wells, manifolds and clusters. We consider multiphase flow of water, gas, and oil in the pipelines, and account for discrete switching and typical inflow characteristics of the sub sea wells. Network methods based on variational calculus provide a modeling framework for decentralized optimization and control. Conservation laws and the second law of thermodynamics combined with the passivity theory of nonlinear control lead to conditions for stability and optimality. We describe interconnections in networks through matrix representations that capture a network's topology. Control strategies are derived from the model, and stability and convergence to the optimal solution follows from the passivity conditions. The proposed distributed controller network can be seen as a special case of a Multi Agent System (MAS).

Other key information

207 results
Below, you will find related content (content tagged with same topic(s) as this publication)
Content type: Ongoing activity

A benchmark for integration of reservoir engineering and geophysics

This activity facilitates the collaboration between reservoir engineers and geophysicists

0
Content type: Publication

A Derivative-Free Approach for the Estimation of Porosity and Permeability Using Time-Lapse Seismic and Production Data

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Lagrangian-Barrier Function for Adjoint State Constraints Optimization of Oil Reservoirs Water Flooding

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Robust Scheme for Spatio-Temporal Inverse Modeling of Oil Reservoirs

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Sparse Basis POD for Model Reduction of Multiphase Compressible Flow

This is a scientific publication written in collaboration with the IO Center

0
Content type: Publication

A structured approach to improved condition monitoring

A paper describing a systematic approach to select and implement appropriate condition monitoring for systems, structures and components.

0
Content type: Presentation

Acceptance criteria for dynamic risk analysis

Presentations at IO Center Work Shop Sept 2013

0
Content type: Presentation

Activities on Dynamic Optimization

TC Meeting - September 2013

0
Content type: Publication

Adaptive Multiscale–Streamline Simulation and Inversion for High-Resolution Geomodels

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Presentation

Addressing Dynamic Risk in the Petroleum Industry by Means of Innovative Analysis Solutions

Presentation given at the CISAP-6 conference in Bologna (13-16 April 2014)

0

Pages