Boundary Control of Long Waves in Nonlinear Dispersive Systems

Boundary Control of Long Waves in Nonlinear Dispersive Systems

This page is a publication and represents journal papers, conference papers and proceedings etc.

0
No votes yet

users have rated this content. We would love to have your vote as well. Log in and rate!



Abstract

Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases.
Content

Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases.

Other key information

206 results
Below, you will find related content (content tagged with same topic(s) as this publication)
Content type: Ongoing activity

A benchmark for integration of reservoir engineering and geophysics

This activity facilitates the collaboration between reservoir engineers and geophysicists

0
Content type: Publication

A Derivative-Free Approach for the Estimation of Porosity and Permeability Using Time-Lapse Seismic and Production Data

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Lagrangian-Barrier Function for Adjoint State Constraints Optimization of Oil Reservoirs Water Flooding

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Robust Scheme for Spatio-Temporal Inverse Modeling of Oil Reservoirs

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Publication

A Sparse Basis POD for Model Reduction of Multiphase Compressible Flow

This is a scientific publication written in collaboration with the IO Center

0
Content type: Publication

A structured approach to improved condition monitoring

A paper describing a systematic approach to select and implement appropriate condition monitoring for systems, structures and components.

0
Content type: Presentation

Acceptance criteria for dynamic risk analysis

Presentations at IO Center Work Shop Sept 2013

0
Content type: Presentation

Activities on Dynamic Optimization

TC Meeting - September 2013

0
Content type: Publication

Adaptive Multiscale–Streamline Simulation and Inversion for High-Resolution Geomodels

This is a scientific publication written in collaboration with the IO Center.

0
Content type: Presentation

Addressing Dynamic Risk in the Petroleum Industry by Means of Innovative Analysis Solutions

Presentation given at the CISAP-6 conference in Bologna (13-16 April 2014)

0

Pages